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Abstract. We describe algorithms for two-stage stochastic linear programming with recourse
and their implementation on a grid computing platform. In particular, we examine serial
and asynchronous versions of the L-shaped method and a trust-region method. The parallel
platform of choice is the dynamic, heterogeneous, opportunistic platform provided by the
Condor system. The algorithms are of master-worker type (with the workers being used to
solve second-stage problems), and the MW runtime support library (which supports master-
worker computations) is key to the implementation. Computational results are presented on
large sample average approximations of problems from the literature.

1. Introduction

Consider the following stochastic optimization problem:

min
x∈S

F (x) def=
N∑
i=1

pif(x, ωi), (1)

where S ∈ IRn is a constraint set, Ω = {ω1, ω2, . . . , ωN} is the set of outcomes
(consisting of N distinct scenarios), and pi is the probability associated with
each scenario. Problems of the form (1) can arise directly (in many applications,
the number of scenarios is naturally finite), or as discretizations of problems over
continuous probability spaces, obtained by approximation or sampling. In this
paper, we discuss the two-stage stochastic linear programming problem with fixed
resource, which is a special case of (1) defined as follows:

min cTx+
∑N
i=1 piq(ωi)

T y(ωi), subject to (2a)
Ax = b, x ≥ 0, (2b)

Wy(ωi) = h(ωi)− T (ωi)x, y(ωi) ≥ 0, i = 1, 2, . . . , N. (2c)

The unknowns in this formulation are x and y(ω1), y(ω2), . . . , y(ωN ), where x
contains the “first-stage variables” and each y(ωi) contains the “second-stage

Jeff Linderoth: Axioma Inc., 501-F Johnson Ferry Road, Suite 450, Marietta, GA 30068;
jlinderoth@axiomainc.com

Stephen Wright: Mathematics and Computer Science Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, IL 60439; wright@mcs.anl.gov

Mathematics Subject Classification (1991): 90C15, 65K05, 68W10



2 Jeff Linderoth, Stephen Wright

variables” associated with the ith scenario. The ith scenario is characterized by
the probability pi and the data objects (q(ωi), T (ωi), h(ωi)).

The formulation (2) is sometimes known as the “deterministic equivalent”
because it lists the unknowns for all scenarios explicitly and poses the problem as
a (potentially very large) structured linear program. An alternative formulation
is obtained by recognizing that each term in the second-stage summation in (2a)
is a piecewise linear convex function of x. Defining the ith second-stage problem
as a linear program (LP) parametrized by the first-stage variables x, that is,

Qi(x) def= miny(ωi) q(ωi)
T y(ωi) subject to (3a)

Wy(ωi) = h(ωi)− T (ωi)x, y(ωi) ≥ 0, (3b)

and defining the objective in (2a) as

Q(x) def= cTx+
N∑
i=1

piQi(x), (4)

we can restate (2) as

min
x
Q(x), subject to Ax = b, x ≥ 0. (5)

We note several features about the problem (5). First, it is clear from (4)
and (3) that Q(x) can be evaluated for a given x by solving the N linear pro-
grams (3) separately. Second, we can derive subgradient information for Qi(x)
by considering dual solutions of (3). If we fix x = x̂ in (3), the primal solution
y(ωi) and dual solution π(ωi) satisfy the following optimality conditions:

q(ωi)−WTπ(ωi) ≥ 0 ⊥ y(ωi) ≥ 0,
Wy(ωi) = h(ωi)− T (ωi)x̂.

From these two conditions we obtain that

Qi(x̂) = q(ωi)T y(ωi) = π(ωi)TWy(ωi) = π(ωi)T [h(ωi)− T (ωi)x̂]. (6)

Moreover, since Qi is piecewise linear and convex, we have for any x that

Qi(x)−Qi(x̂) ≥ π(ωi)T [−T (ωi)x+ T (ωi)x̂] =
(
−T (ωi)Tπ(ωi)

)T
(x− x̂), (7)

which implies that
−T (ωi)Tπ(ωi) ∈ ∂Qi(x̂), (8)

where ∂Qi(x̂) denotes the subgradient of Qi at x̂. By Rockafellar [21, Theo-
rem 23.8], using polyhedrality of each Qi, we have from (4) that

∂Q(x̂) = c+
N∑
i=1

pi∂Qi(x̂), (9)

for every x̂ that lies in the domain of each Qi, i = 1, 2, . . . , N .
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Let S denote the solution set for (5); we assume for most of the paper that
S is nonempty. Since (5) is a convex program, S is closed and convex, and the
projection operator P (·) onto S is well defined. Because the objective function
in (5) is piecewise linear and the constraints are linear, the problem has a weak
sharp minimum (Burke and Ferris [8]); that is, there exists ε̂ > 0 such that

Q(x)−Q∗ ≥ ε̂‖x− P (x)‖∞, for all x with Ax = b, x ≥ 0, (10)

where Q∗ is the optimal value of the objective.
The subgradient information can be used by algorithms in different ways.

Successive estimates of the optimal x can be obtained by minimizing over a
convex underestimate of Q(x) constructed from subgradients obtained at earlier
iterations, as in the L-shaped method described in Section 2. This method can
be stabilized by the use of a quadratic regularization term (Ruszczyński [22],
Kiwiel [17]) or by the explicit use of a trust region, as in the `∞ trust-region
approach described in Section 3. Alternatively, when an upper bound on the op-
timal value Q∗ is available, one can derive each new iterate from an approximate
analytic center of an approximate epigraph. The latter approach has been ex-
plored by Bahn et al. [1] and applied to a large stochastic programming problem
by Frangière, Gondzio, and Vial [9].

Because evaluation of Qi(x) and elements of its subdifferential can be carried
out independently for each i = 1, 2, . . . , N , and because such evaluations usually
constitute the bulk of the computational workload, implementation on parallel
computers is possible. We can partition second-stage scenarios i = 1, 2, . . . , N
into “chunks” and define a computational task to be the solution of all the LPs
(3) in a single chunk. Each such task could be assigned to an available worker
processor. Relationships between the solutions of (3) for different scenarios can
be exploited within each chunk (see Birge and Louveaux [6, Section 5.4]). The
number of second-stage LPs in each chunk should be chosen to ensure that the
computation does not become communication bound. That is, each chunk should
be large enough that its processing time significantly exceeds the time required
to send the data to the worker processor and to return the results.

In this paper, we describe implementations of decomposition algorithms for
stochastic programming on a dynamic, heterogeneous computational grid made
up of workstations, PCs (from clusters), and supercomputer nodes. Specifically,
we use the environment provided by the Condor system [18]. We also discuss
the MW runtime library (Goux et al. [14,13]), a software layer that significantly
simplifies the process of implementing parallel algorithms in Condor.

For the dimensions of problems and parallel platforms considered in this pa-
per, evaluation of the functions Qi(x) and their subgradients at a single x often
is insufficient to make effective use of the available processors. Moreover, “syn-
chronous” algorithms—those that depend for efficiency on all tasks completing
in a timely fashion—run the risk of poor performance in an environment such as
ours, in which failure or suspension of worker processors while they are process-
ing a task is not an infrequent event. We are led therefore to “asynchronous”
approaches that consider different points x simultaneously. Asynchronous vari-
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ants of the L-shaped and `∞ trust-region methods are described in Sections 2.2
and 4, respectively.

Other parallel algorithms for stochastic programming have been devised by
Birge et al. [4,5], Birge and Qi [7], and Frangière, Gondzio, and Vial [9]. In [4],
the focus is on multistage problems in which the scenario tree is decomposed into
subtrees, which are processed independently and in parallel on worker processors.
Dual solutions from each subtree are used to construct a model of the first-
stage objective (using an L-shaped approach like that described in Section 2),
which is periodically solved by a master process to obtain a new candidate
first-stage solution x. Parallelization of the linear algebra operations in interior-
point algorithms is considered in [7], but this approach involves significant data
movement and does not scale particularly well. In [9], the second-stage problems
(3) are solved concurrently and inexactly by using an interior-point code. The
master process maintains an upper bound on the optimal objective, and this
bound along with the subgradients obtained from the second-stage problems
yields a polygon whose (approximate) analytic center is calculated periodically
to obtain a new candidate x. The approach is based in part on an algorithm
described by Gondzio and Vial [12]. The numerical results in [9] report solution
of a two-stage stochastic linear program with 2.6 million variables and 1.2 million
constraints in three hours on a cluster of 10 Linux PCs.

2. L-Shaped Methods

We now describe the L-shaped method, a fundamental algorithm for solving (5),
and an asynchronous variant.

2.1. The Multicut L-Shaped Method

The L-shaped method of Van Slyke and Wets [26] for solving (5) proceeds by
finding subgradients of partial sums of the terms that make up Q (4), together
with linear inequalities that define the domain of Q. The method is essentially
Benders decomposition [2], enhanced to deal with infeasible iterates. A full de-
scription is given in Chapter 5 of Birge and Louveaux [6]. We sketch the approach
here and show how it can be implemented in an asynchronous fashion.

We suppose that the second-stage scenarios indexed by 1, 2, . . . , N are parti-
tioned into T clusters denoted by N1,N2, . . . ,NT . Let Q[j] represent the partial
sum from (4) corresponding to the cluster Nj :

Q[j](x) =
∑
i∈Nj

piQi(x). (11)

The algorithm maintains a model function mk
[j], which is a piecewise linear lower

bound on Q[j] for each j. We define this function at iteration k by

mk
[j](x) = inf{θj | θje ≥ F k[j]x+ fk[j]}, (12)
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where F k[j] is a matrix whose rows are subgradients of Q[j] at previous iterates of
the algorithm, and e = (1, 1, . . . , 1)T . The rows of θje ≥ F k[j]x+ fk[j] are referred
to as optimality cuts. Upon evaluating Q[j] at the new iterate xk by solving (3)
for each i ∈ Nj , a subgradient gj ∈ ∂Q[j] can be obtained from a formula derived
from (8) and (9), namely,

gj = −
∑
i∈Nj

piT (ωi)Tπ(ωi), (13)

where each π(ωi) is an optimal dual solution of (3). Since by the subgradient
property we have

Q[j](x) ≥ gTj x+ (Q[j](xk)− gTj xk),

we can obtain F k+1
[j] from F k[j] by appending the row gTj , and fk+1

[j] from fk[j] by
appending the element (Q[j](xk) − gTj xk). In order to keep the number of cuts
reasonable, the cut is not added if mk

[j] is not greater than the value predicted
by the lower bounding approximation (see (17) below). In this case, the current
set of cuts in F k[j], f

k
[j] adequately models Q[j]. In addition, we may also wish

to delete some rows from F k+1
[j] , fk+1

[j] corresponding to facets of the epigraph of
(12) that we do not expect to be active in later iterations.

The algorithm also maintains a collection of feasibility cuts of the form

Dkx ≥ dk, (14)

which have the effect of excluding values of x that were found to be infeasible,
in the sense that some of the second-stage linear programs (3) are infeasible
for these values of x. By Farkas’s theorem (see Mangasarian [19, p. 31]), if the
constraints (3b) are infeasible, there exists π(ωi) with the following properties:

WTπ(ωi) ≤ 0, [h(ωi)− T (ωi)x]T π(ωi) > 0.

(In fact, such a π(ωi) can be obtained from the dual simplex method for the
feasibility problem (3b).) To exclude this x from further consideration, we simply
add the inequality [h(ωi)−T (ωi)x]Tπ(ωi) ≤ 0 to the constraint set, by appending
the row vector π(ωi)TT (ωi) to Dk and the element π(ωi)Th(ωi) to dk in (14).

The iterate xk of the multicut L-shaped method is obtained by solving the
following approximation to (5):

min
x

mk(x), subject to Dkx ≥ dk, Ax = b, x ≥ 0, (15)

where

mk(x) def= cTx+
T∑
j=1

mk
[j](x). (16)



6 Jeff Linderoth, Stephen Wright

In practice, we substitute from (12) to obtain the following linear program:

min
x,θ1,...,θT

cTx+
T∑
j=1

θj , subject to (17a)

θje ≥ F k[j]x+ fk[j], j = 1, 2, . . . , T, (17b)

Dkx ≥ dk, (17c)
Ax = b, x ≥ 0. (17d)

The L-shaped method proceeds by solving (17) to generate a new candidate x,
then evaluating the partial sums (11) and adding optimality and feasibility cuts
as described above. The process is repeated, terminating when the improvement
in objective promised by the subproblem (15) becomes small.

For simplicity we make the following assumption for the remainder of the
paper.

Assumption 1.

(i) The problem has complete recourse; that is, the feasible set of (3) is nonempty
for all i = 1, 2, . . . , N and all x, so that the domain of Q(x) in (4) is IRn.

(ii) The solution set S is nonempty.

Under this assumption, feasibility cuts of the form (14), (17c) do not appear
during the course of the algorithm. Our algorithms and their analysis can be
generalized to handle situations in which Assumption 1 does not hold, but since
our development is complex enough already, we postpone discussion of these
generalizations to a future report.

Using Assumption 1, we can specify the L-shaped algorithm formally as fol-
lows:

Algorithm LS
choose tolerance εtol;
choose starting point x0;
define initial model m0 to be a piecewise linear underestimate of Q(x)

such that m0(x0) = Q(x0) and m0 is bounded below;
Qmin ← Q(x0);
for k = 0, 1, 2, . . .

obtain xk+1 by solving (15);
if Qmin −mk(xk+1) ≤ εtol(1 + |Qmin|)

STOP;
evaluate function and subgradient information at xk+1;
Qmin ← min(Qmin,Q(xk+1));
obtain mk+1 by adding optimality cuts to mk;

end(for).
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2.2. An Asynchronous Parallel Variant of the L-Shaped Method

The L-shaped approach lends itself naturally to implementation in a master-
worker framework. The problem (17) is solved by the master process, while
solution of each cluster Nj of second-stage problems, and generation of the as-
sociated cuts, can be carried out by the worker processes running in parallel.
This approach can be adapted for an asynchronous, unreliable environment in
which the results from some second-stage clusters are not returned in a timely
fashion. Rather than having all the worker processors sit idle while waiting for
the tardy results, we can proceed without them, re-solving the master by using
the additional cuts that were generated by the other second-stage clusters.

We denote the model function simply by m for the asynchronous algorithm,
rather than appending a subscript. Whenever the time comes to generate a new
iterate, the current model is used. In practice, we would expect the algorithm
to give different results each time it is executed, because of the unpredictable
speed and order in which the functions are evaluated and subgradients generated.
Because of Assumption 1, we can write the subproblem

min
x

m(x), subject to Ax = b, x ≥ 0. (18)

Algorithm ALS, the asynchronous variant of the L-shaped method that we
describe here, is made up of four key operations, three of which execute on the
master processor and one of which runs on the workers. These operations are as
follows:

– partial evaluate. This is the routine for evaluating Q[j](x) defined by (11)
for a given x and j, in the process generating a subgradient gj of Q[j](x). It
runs on a worker processor and returns its results to the master by activating
the routine act on completed task on the master processor.

– evaluate. This routine, which runs on the master, simply places T tasks of
the type partial evaluate for a given x into the task pool for distribution
to the worker processors as they become available. The completion of these
T tasks is equivalent to evaluating Q(x).

– initialize. This routine runs on the master processor and performs initial
bookkeeping, culminating in a call to evaluate for the initial point x0.

– act on completed task. This routine, which runs on the master, is activated
whenever the results become available from a partial evaluate task. It
updates the model and increments a counter to keep track of the number of
clusters that have been evaluated at each candidate point. When appropriate,
it solves the master problem with the latest model to obtain a new candidate
iterate and will call evaluate.

In our implementation of both this algorithm and its more sophisticated
cousin Algorithm ATR of Section 4, we may define a single task to consist of the
evaluation of more than one cluster Nj . We may bundle, say, 5 or 10 clusters
into a single task, in the interests of making the task large enough to justify the
master’s effort in packing its data and unpacking its results, and to maintain
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the ratio of compute time to communication cost at a high level. For purposes
of simplicity, however, we assume in the descriptions both of this algorithm and
of ATR that each task consists of a single cluster.

The implementation depends on a “synchronicity” parameter σ which is the
proportion of clusters that must be evaluated at a point to trigger the generation
of a new candidate iterate. Typical values of σ are in the range 0.25 to 0.9.
A logical variable specevalk keeps track of whether xk has yet triggered a
new candidate. Initially, specevalk is set to false, then set to true when the
proportion of evaluated clusters passes the threshold σ.

We now specify all the methods making up Algorithm ALS.

ALS: partial evaluate(xq, q, j,Q[j](xq), gj)
Given xq, index q, and partition number j, evaluate Q[j](xq) from (11)

together with a partial subgradient gj from (13);
Activate act on completed task(xq, q, j,Q[j](xq), gj) on the master processor.

ALS: evaluate(xq, q)
for j = 1, 2, . . . , T (possibly concurrently)

partial evaluate(xq, q, j,Q[j](xq), gj);
end (for)

ALS: initialize
choose tolerance εtol;
choose starting point x0;
choose threshold σ ∈ (0, 1];
Qmin ←∞;
k ← 0, speceval0 ← false, t0 ← 0;
evaluate(x0, 0).

ALS: act on completed task(xq, q, j,Q[j](xq), gj)
tq ← tq + 1;
add Q[j](xq) and cut gj to the model m;
if tq = T

Qmin ← min(Qmin,Q(xq));
else if tq ≥ σT and not specevalq

specevalq ←true;
k ← k + 1;
solve current model problem (18) to obtain xk+1;
if Qmin −m(xk+1) ≤ εtol(1 + |Qmin|)

STOP;
evaluate(xk, k);

end (if)
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We present results for Algorithm ALS in Section 6. While the algorithm is
able to use a large number of worker processors on our opportunistic platform,
it suffers from the usual drawbacks of the L-shaped method, namely, that cuts,
once generated, must be retained for the remainder of the computation to ensure
convergence and that large steps are typically taken on early iterations before a
sufficiently good model approximation to Q(x) is created, making it impossible
to exploit prior knowledge about the location of the solution.

3. A Bundle-Trust-Region Method

Trust-region approaches can be implemented by making only minor modifica-
tions to implementations of the L-shaped method, and they possesses several
practical advantages along with stronger convergence properties. The trust-
region methods we describe here are related to the regularized decomposition
method of Ruszczyński [22] and the bundle-trust-region approaches of Kiwiel [17]
and Hirart-Urruty and Lemaréchal [15, Chapter XV]. The main differences are
that we use box-shaped trust regions yielding linear programming subproblems
(rather than quadratic programs) and that our methods manipulate the size of
the trust region directly rather than indirectly via a regularization parameter.

When requesting a subgradient of Q at some point x, our algorithms do not
require particular (e.g., extreme) elements of the subdifferential to be supplied.
Nor do they require the subdifferential ∂Q(x) to be representable as a convex
combination of a finite number of vectors. In this respect, our algorithms contrast
with that of Ruszczyński [22], for instance, which exploits the piecewise-linear
nature of the objectives Qi in (3). Because of our weaker conditions on the
subgradient information, we cannot prove a finite termination result of the type
presented in [22, Section 3]. However, these conditions potentially allow our
algorithms to be extended to a more general class of convex nondifferentiable
functions. We hope to explore these generalizations in future work.

3.1. A Method Based on `∞ Trust Regions

A key difference between the trust-region approach of this section and the L-
shaped method of the preceding section is that we impose an `∞ norm bound
on the size of the step. It is implemented by simply adding bound constraints to
the linear programming subproblem (17) as follows:

−∆e ≤ x− xk ≤ ∆e, (19)

where e = (1, 1, . . . , 1)T , ∆ is the trust-region radius, and xk is the current
iterate. During the kth iteration, it may be necessary to solve several problems
with trust regions of the form (19), with different model functions m and possibly
different values of ∆, before a satisfactory new iterate xk+1 is identified. We refer
to xk and xk+1 as major iterates and the points xk,`, ` = 0, 1, 2, . . . obtained
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by minimizing the current model function subject to the constraints and trust-
region bounds of the form (19) as minor iterates. Another key difference between
the trust-region approach and the L-shaped approach is that a minor iterate xk,`

is accepted as the new major iterate xk+1 only if it yields a substantial reduction
in the objective function Q over the previous iterate xk, in a sense to be defined
below. A further important difference is that one can delete optimality cuts from
the model functions, between minor and major iterations, without compromising
the convergence properties of the algorithm.

To specify the method, we need to augment the notation established in the
previous section. We define mk,`(x) to be the model function after ` minor
iterations have been performed at iteration k, and ∆k,` > 0 to be the trust-
region radius at the same stage. Under Assumption 1, there are no feasibility
cuts, so that the problem to be solved to obtain the minor iteration xk,` is as
follows:

min
x

mk,`(x) subject to Ax = b, x ≥ 0, ‖x− xk‖∞ ≤ ∆k,` (20)

(cf. (15)). By expanding this problem in a similar fashion to (17), we obtain

min
x,θ1,...,θT

cTx+
T∑
j=1

θj , subject to (21a)

θje ≥ F k,`[j] x+ fk,`[j] , j = 1, 2, . . . , T, (21b)

Ax = b, x ≥ 0, (21c)
−∆k,`e ≤ x− xk ≤ ∆k,`e. (21d)

We assume the initial model mk,0 at major iteration k to satisfy the following
two properties:

mk,0(xk) = Q(xk), (22a)
mk,0 is a piecewise linear underestimate of Q. (22b)

Denoting the solution of the subproblem (21) by xk,`, we accept this point
as the new iterate xk+1 if the decrease in the actual objective Q (see (5)) is at
least some fraction of the decrease predicted by the model function mk,`. That
is, for some constant ξ ∈ (0, 1/2), the acceptance test is

Q(xk,`) ≤ Q(xk)− ξ
(
Q(xk)−mk,`(xk,`)

)
. (23)

(A typical value for ξ is 10−4.)
If the test (23) fails to hold, we obtain a new model function mk,`+1 by

adding and possibly deleting cuts from mk,`(x). This process aims to refine the
model function, so that it eventually generates a new major iteration, while
economizing on storage by allowing deletion of subgradients that no longer seem
helpful. Addition and deletion of cuts are implemented by adding and deleting
rows from F k,`[j] and fk,`[j] , to obtain F k,`+1

[j] and fk,`+1
[j] , for j = 1, 2, . . . , T .

Given some parameter η ∈ [0, 1), we obtain mk,`+1 from mk,` by means of
the following procedure:
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Procedure Model-Update (k, `)
for each optimality cut

possible delete ← true;
if the cut was generated at xk

possible delete ← false;
else if the cut is active at the solution of (21)

possible delete ← false;
else if the cut was generated at an earlier minor iteration

¯̀= 0, 1, . . . , `− 1 such that

Q(xk)−mk,`(xk,`) > η
[
Q(xk)−mk,¯̀(x

k,¯̀)
]

(24)

possible delete ← false;
end (if)
if possible delete

possibly delete the cut;
end (for each)
add optimality cuts obtained from each of the component functions

Q[j] at xk,`.

In our implementation, we delete the cut if possible delete is true at the
final conditional statement and, in addition, the cut has not been active during
the last 100 solutions of (21). More details are given in Section 6.2.

Because we retain all cuts active at xk during the course of major iteration
k, the following extension of (22a) holds:

mk,`(xk) = Q(xk), ` = 0, 1, 2, . . . . (25)

Since we add only subgradient information, the following generalization of (22b)
also holds uniformly:

mk,` is a piecewise linear underestimate of Q, for ` = 0, 1, 2, . . . . (26)

We may also decrease the trust-region radius ∆k,` between minor iterations
(that is, choose ∆k,`+1 < ∆k,`) when the test (23) fails to hold. We do so if the
match between model and objective appears to be particularly poor. If Q(xk,`)
exceeds Q(xk) by more than an estimate of the quantity

max
‖x−xk‖∞≤1

Q(xk)−Q(x), (27)

we conclude that the “upside” variation of the function Q deviates too much
from its “downside” variation, and we choose the new radius ∆k,`+1 to bring
these quantities more nearly into line. Our estimate of (27) is simply

1
min(1,∆k,`)

[
Q(xk)−mk,`(xk,`)

]
,

that is, an extrapolation of the model reduction on the current trust region to
a trust region of radius 1. Our complete strategy for reducing ∆ is therefore as
follows. (The counter is initialized to zero at the start of each major iteration.)
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Procedure Reduce-∆
evaluate

ρ = min(1,∆k,`)
Q(xk,`)−Q(xk)
Q(xk)−mk,`(xk,`)

; (28)

if ρ > 0
counter ← counter+1;

if ρ > 3 or (counter ≥ 3 and ρ ∈ (1, 3])
set

∆k,`+1 =
1

min(ρ, 4)
∆k,`;

reset counter ← 0;

This procedure is related to the technique of Kiwiel [17, p. 109] for increasing
the coefficient of the quadratic penalty term in his regularized bundle method.

If the test (23) is passed, so that we have xk+1 = xk,`, we have a great deal
of flexibility in defining the new model function mk+1,0. We require only that
the properties (22) are satisfied, with k + 1 replacing k. Hence, we are free to
delete much of the optimality cut information accumulated at iteration k (and
previous iterates). In practice, of course, it is wise to delete only those cuts that
have been inactive for a substantial number of iterations; otherwise we run the
risk that many new function and subgradient evaluations will be required to
restore useful model information that was deleted prematurely.

If the step to the new major iteration xk+1 shows a particularly close match
between the true function Q and the model function mk,` at the last minor iter-
ation of iteration k, we consider increasing the trust-region radius. Specifically,
if

Q(xk,`) ≤ Q(xk)− 0.5
(
Q(xk)−mk,`(xk,`)

)
, ‖xk − xk,`‖∞ = ∆k,`, (29)

then we set
∆k+1,0 = min(∆hi, 2∆k,`), (30)

where ∆hi is a prespecified upper bound on the radius.
Before specifying the algorithm formally, we define the convergence test.

Given a parameter εtol > 0, we terminate if

Q(xk)−mk,`(xk,`) ≤ εtol(1 + |Q(xk)|). (31)

Algorithm TR
choose ξ ∈ (0, 1/2), maximum trust region ∆hi, tolerance εtol;
choose starting point x0;
define initial model m0,0 with the properties (22) (for k = 0);
choose ∆0,0 ∈ (0,∆hi];
for k = 0, 1, 2, . . .

finishedMinorIteration ← false;
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`← 0; counter← 0;
repeat

solve (20) to obtain xk,`;
if (31) is satisfied

STOP with approximate solution xk;
evaluate function and subgradient at xk,`;
if (23) is satisfied

set xk+1 = xk,`;
obtain mk+1,0 by possibly deleting cuts from mk,`, but

retaining the properties (22) (with k + 1 replacing k);
choose ∆k+1,0 ∈ [∆k,`,∆hi] according to (29), (30);
finishedMinorIteration ← true;

else
obtain mk,`+1 from mk,` via Procedure Model-Update (k, `);
obtain ∆k,`+1 via Procedure Reduce-∆;

`← `+ 1;
until finishedMinorIteration

end (for)

3.2. Analysis of the Trust-Region Method

We now describe the convergence properties of Algorithm TR. We show that for
εtol = 0, the algorithm either terminates at a solution or generates a sequence of
major iterates that approaches the solution set S (Theorem 2). When εtol > 0,
the algorithm terminates finitely; that is, it avoids generating infinite sequences
either of major or minor iterates (Theorem 3).

Given some starting point x0 satisfying the constraints Ax0 = b, x0 ≥ 0,
and setting Q0 = Q(x0), we define the following quantities that are useful in
describing and analyzing the algorithm:

L(Q0) = {x |Ax = b, x ≥ 0,Q(x) ≤ Q0}, (32)
L(Q0;∆) = {x | ‖x− y‖ ≤ ∆, for some y ∈ L(Q0)}, (33)

β = sup{‖g‖1 | g ∈ ∂Q(x), for some x ∈ L(Q0;∆hi)}. (34)

Using Assumption 1, we can easily show that β <∞.
We start by showing that the optimal objective value for (20) cannot decrease

from one minor iteration to the next.

Lemma 1. Suppose that xk,` does not satisfy the acceptance test (23). Then we
have

mk,`(xk,`) ≤ mk,`+1(xk,`+1).

Proof. In obtaining mk,`+1 from mk,` in Model-Update, we do not allow deletion
of cuts that were active at the solution xk,` of (21). Using F̄ k,`[j] and f̄k,`[j] to denote
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the active rows in F k,`[j] and fk,`[j] , we have that xk,` is also the solution of the
following linear program (in which the inactive cuts are not present):

min
x,θ1,...,θT

cTx+
T∑
j=1

θj , subject to (35a)

θje ≥ F̄ k,`[j] x+ f̄k,`[j] , j = 1, 2, . . . , T, (35b)

Ax = b, x ≥ 0, (35c)
−∆k,`e ≤ x− xk ≤ ∆k,`e. (35d)

The subproblem to be solved for xk,`+1 differs from (35) in two ways. First,
additional rows may be added to F̄ k,`[j] and f̄k,`[j] , consisting of function values
and subgradients obtained at xk,` and also inactive cuts carried over from the
previous (21). Second, the trust-region radius ∆k,`+1 may be smaller than ∆k,`.
Hence, the feasible region of the problem to be solved for xk,`+1 is a subset of
the feasible region for (35), so the optimal objective value cannot be smaller.

Next we have a result about the amount of reduction in the model function
mk,`.

Lemma 2. For all k = 0, 1, 2, . . . and ` = 0, 1, 2, . . ., we have that

mk,`(xk)−mk,`(xk,`) = Q(xk)−mk,`(xk,`)

≥ min
(
∆k,`, ‖xk − P (xk)‖∞

) Q(xk)−Q∗

‖xk − P (xk)‖∞
(36a)

≥ ε̂min
(
∆k,`, ‖xk − P (xk)‖∞

)
, (36b)

where ε̂ > 0 is defined in (10).

Proof. The first equality follows immediately from (25), while the second in-
equality (36b) follows immediately from (36a) and (10). We now prove (36a).

Consider the following subproblem in the scalar τ :

min
τ∈[0,1]

mk,`

(
xk + τ [P (xk)− xk]

)
subject to

∥∥τ [P (xk)− xk]
∥∥
∞ ≤ ∆k,`. (37)

Denoting the solution of this problem by τk,`, we have by comparison with (20)
that

mk,`(xk,`) ≤ mk,`

(
xk + τk,`[P (xk)− xk]

)
. (38)

If τ = 1 is feasible in (37), we have from (38) and (26) that

mk,`(xk,`) ≤ mk,`

(
xk + τk,`[P (xk)− xk]

)
≤ mk,`

(
xk + [P (xk)− xk]

)
= mk,`(P (xk)) ≤ Q(P (xk)) = Q∗.

Therefore, when τ = 1 is feasible for (37), we have from (25) that

mk,`(xk)−mk,`(xk,`) ≥ Q(xk)−Q∗,
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so that (36a) holds in this case.
When τ = 1 is infeasible for (37), consider setting τ = ∆k,`/‖xk − P (xk)‖∞

(which is certainly feasible for (37)). We have from (38), the definition of τk,`,
the fact (26) that mk,` underestimates Q, and convexity of Q that

mk,`(xk,`) ≤ mk,`

(
xk +∆k,`

P (xk)− xk

‖P (xk)− xk‖∞

)
≤ Q

(
xk +∆k,`

P (xk)− xk

‖P (xk)− xk‖∞

)
≤ Q(xk) +

∆k,`

‖P (xk)− xk‖∞
(Q∗ −Q(xk)).

Therefore, using (25), we have

mk,`(xk)−mk,`(xk,`) ≥
∆k,`

‖P (xk)− xk‖∞
[Q(xk)−Q∗],

verifying (36a) in this case as well.

Our next result finds a lower bound on the trust-region radii ∆k,`. For pur-
poses of this result we define a quantity Ek to measure the closest approach to
the solution set for all iterates up to and including xk, that is,

Ek
def= min

k̄=0,1,...,k
‖xk̄ − P (xk̄)‖∞. (39)

Note that Ek decreases monotonically with k. We also define ∆init to be the
initial value of the trust region.

Lemma 3. There is a constant ∆lo > 0 such that for all trust regions ∆k,` used
in the course of Algorithm TR, we have

∆k,` ≥ min(∆lo, Ek/4).

Proof. We prove the result by showing that the value∆lo = (1/4) min(1,∆init, ε̂/β)
has the desired property, where ε̂ is from (10) and β is from (34).

Suppose for contradiction that there are indices k and ` such that

∆k,` <
1
4

min
(

1,
ε̂

β
,∆init, Ek

)
.

Since the trust region can be reduced by at most a factor of 4 by Procedure
Reduce-∆, there must be an earlier trust region radius ∆k̄,¯̀ (with k̄ ≤ k) such
that

∆k̄,¯̀< min
(

1,
ε̂

β
, Ek

)
, (40)
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and ρ > 1 in (28), that is,

Q(xk̄,¯̀)−Q(xk̄) >
1

min(1,∆k̄,¯̀)

(
Q(xk̄)−mk̄,¯̀(x

k̄,¯̀)
)

=
1

∆k̄,¯̀

(
Q(xk̄)−mk̄,¯̀(x

k̄,¯̀)
)
. (41)

By applying Lemma 2, and using (40), we have

Q(xk̄)−mk̄,¯̀(x
k̄,¯̀) ≥ ε̂min

(
∆k̄,¯̀, ‖xk̄ − P (xk̄)‖∞

)
= ε̂∆k̄,¯̀ (42)

where the last equality follows from ‖xk̄ − P (xk̄)‖∞ ≥ Ek̄ ≥ Ek and (40). By
combining (42) with (41), we have that

Q(xk̄,¯̀)−Q(xk̄) > ε̂. (43)

By using standard properties of subgradients, we have

Q(xk̄,¯̀)−Q(xk̄) ≤ gT¯̀ (xk̄,¯̀− xk̄)

≤ ‖g¯̀‖1‖xk̄ − xk̄,
¯̀‖∞ ≤ ‖g¯̀‖1∆k̄,¯̀, for all g¯̀ ∈ ∂Q(xk̄,¯̀). (44)

By combining this expression with (43), and using (40) again, we obtain that

‖g¯̀‖1 ≥
ε̂

∆k̄,¯̀
> β.

However, since xk̄,¯̀ ∈ L(Q0;∆hi), we have from (34) that ‖g¯̀‖1 ≤ β, giving a
contradiction.

Finite termination of the inner iterations is proved in the following two re-
sults. Recall that the parameters ξ and η are defined in (23) and (24), respec-
tively.

Lemma 4. Let εtol = 0 in Algorithm TR, and let η̄ be any constant satisfying
0 < η̄ < 1, η̄ > ξ, η̄ ≥ η. Let `1 be any index such that xk,`1 fails to satisfy the
test (23). Then either the sequence of inner iterations eventually yields a point
xk,`2 satisfying the acceptance test (23), or there is an index `2 > `1 such that

Q(xk)−mk,`2(xk,`2) ≤ η̄
[
Q(xk)−mk,`1(xk,`1)

]
. (45)

Proof. Suppose for contradiction that the none of the minor iterations following
`1 satisfies either (23) or the criterion (45); that is,

Q(xk)−mk,q(xk,q) > η̄
[
Q(xk)−mk,`1(xk,`1)

]
,

≥ η
[
Q(xk)−mk,`1(xk,`1)

]
, for all q > `1. (46)

It follows from this bound, together with Lemma 1 and Procedure Model-
Update, that none of the cuts generated at minor iterations q ≥ `1 is deleted.
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We assume in the remainder of the proof that q and ` are generic minor
iteration indices that satisfy

q > ` ≥ `1.

Because the function and subgradients from minor iterations xk,`, l = l1, l1 +
1, . . . are retained throughout the major iteration k, we have

mk,q(xk,`) = Q(xk,`). (47)

By definition of the subgradient, we have

mk,q(x)−mk,q(xk,`) ≥ gT (x− xk,`), for all g ∈ ∂mk,q(xk,`). (48)

Therefore, from (26) and (47), it follows that

Q(x)−Q(xk,`) ≥ gT (x− xk,`), for all g ∈ ∂mk,q(xk,`),

so that
∂mk,q(xk,`) ⊂ ∂Q(xk,`). (49)

Since Q(xk) < Q(x0) = Q0, we have from (32) that xk ∈ L(Q0). Therefore,
from the definition (33) and the fact that ‖xk,` − xk‖ ≤ ∆k,` ≤ ∆hi, we have
that xk,` ∈ L(Q0;∆hi). It follows from (34) and (49) that

‖g‖1 ≤ β, for all g ∈ ∂mk,q(xk,`). (50)

Since xk,` is rejected by the test (23), we have from (47) and Lemma 1 that
the following inequalities hold:

mk,q(xk,`) = Q(xk,`) ≥ Q(xk)− ξ
[
Q(xk)−mk,`(xk,`)

]
≥ Q(xk)− ξ

[
Q(xk)−mk,`1(xk,`1)

]
.

By rearranging this expression, we obtain

Q(xk)−mk,q(xk,`) ≤ ξ
[
Q(xk)−mk,`1(xk,`1)

]
. (51)

Consider now all points x satisfying

‖x− xk,`‖∞ ≤
η̄ − ξ
β

[
Q(xk)−mk,`1(xk,`1)

] def= ζ > 0. (52)

Using this bound together with (48) and (50), we obtain

mk,q(xk,`)−mk,q(x) ≤ gT (xk,` − x)
≤ β‖xk,` − x‖∞ ≤ (η̄ − ξ)

[
Q(xk)−mk,`1(xk,`1)

]
.

By combining this bound with (51), we find that the following bound is satisfied
for all x in the neighborhood (52):

Q(xk)−mk,q(x) =
[
Q(xk)−mk,q(xk,`)

]
+
[
mk,q(xk,`)−mk,q(x)

]
≤ η̄

[
Q(xk)−mk,`1(xk,`1)

]
.
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It follows from this bound, in conjunction with (46), that xk,q (the solution of the
trust-region problem with model function mk,q) cannot lie in the neighborhood
(52). Therefore, we have

‖xk,q − xk,`‖∞ > ζ. (53)

But since ‖xk,`−xk‖∞ ≤ ∆k ≤ ∆hi for all ` ≥ `1, it is impossible for an infinite
sequence {xk,`}`≥`1 to satisfy (53). We conclude that (45) must hold for some
`2 ≥ `1, as claimed.

We now show that the minor iteration sequence terminates at a point xk,`

satisfying the acceptance test, provided that xk is not a solution.

Theorem 1. Suppose that εtol = 0.

(i) If xk /∈ S, there is an ` ≥ 0 such that xk,` satisfies (23).
(ii) If xk ∈ S, then either Algorithm TR terminates (and verifies that xk ∈ S),

or Q(xk)−mk,`(xk,`) ↓ 0.

Proof. Suppose for the moment that the inner iteration sequence is infinite, that
is, the test (23) always fails. By applying Lemma 4 recursively, with any constant
η̄ satisfying the properties stated in Lemma 4, we can identify a sequence of
indices 0 < `1 < `2 < . . . such that

Q(xk)−mk,`j (x
k,`j ) ≤ η̄

[
Q(xk)−mk,`j−1(xk,`j−1)

]
≤ η̄2

[
Q(xk)−mk,`j−2(xk,`j−2)

]
...
≤ η̄j

[
Q(xk)−mk,0(xk,0)

]
. (54)

When xk /∈ S, we have from Lemma 3 that

∆k,` ≥ min(∆lo, Ek/4) def= ∆̄lo > 0, for all ` = 0, 1, 2, . . .,

so the right-hand side of (36a) is strictly positive. Hence for j sufficiently large,
we have that

Q(xk)−mk,`j (x
k,`j ) ≤ 0.5 min

(
∆̄lo, ‖xk − P (xk)‖∞

) Q(xk)−Q∗

‖xk − P (xk)‖∞
.

But this inequality contradicts (36), proving (i).
For the case of xk ∈ S, there are two possibilities. If the inner iteration

sequence terminates finitely at some xk,`, we have Q(xk) −mk,`(xk,`) = 0 and
indeed that

mk,`(x) ≥ Q(xk) = Q∗, for all x with ‖x− xk‖∞ ≤ ∆k,`.

Because of (26), we have that Q(x) ≥ Q(xk) for all x in a neighborhood of xk,
implying that 0 ∈ ∂Q(xk). Therefore, termination under these circumstances
yields a guarantee that xk ∈ S. When the algorithm does not terminate, it
follows from (54) that Q(xk)−mk,`(xk,`)→ 0. By applying Lemma 1, we verify
our claim (ii) of monotonic convergence.
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We now prove convergence of Algorithm TR to S.

Theorem 2. Suppose that εtol = 0. The sequence of major iterations {xk} is
either finite, terminating at some xk ∈ S, or is infinite, with the property that
‖xk − P (xk)‖∞ → 0.

Proof. If the claim does not hold, there are two possibilities. The first is that
the sequence of major iterations terminates finitely at some xk /∈ S. However,
Theorem 1 ensures, however, that the minor iteration sequence will terminate
at some new major iteration xk+1 under these circumstances, so we can rule out
this possibility. The second possibility is that the sequence {xk} is infinite but
that there is some ε > 0 and an infinite subsequence of indices {kj}j=1,2,... such
that

‖xkj − P (xkj )‖∞ ≥ ε, j = 0, 1, 2, . . . .

Since the sequence {Q(xkj )}j=1,2,... is infinite, decreasing, and bounded below,
it converges to some value Q̄ > Q∗. Moreover, since the entire sequence {Q(xk)}
is monotone decreasing, it follows that Q(xk) > Q̄ and therefore

Q(xk)−Q∗ > Q̄ − Q∗ > 0, k = 0, 1, 2, . . . .

Hence, by boundedness of the subgradients (see (34)), we can identify a constant
ε̄ > 0 such that

‖xk − P (xk)‖∞ ≥ ε̄, k = 0, 1, 2, . . . .

It follows from (39) that

Ek ≥ ε̄, k = 0, 1, 2, . . . . (55)

For each major iteration index k, let `(k) be the minor iteration index that
passes the acceptance test (23). By combining (23) with Lemma 2, we have that

Q(xk)−Q(xk+1) ≥ ξε̂min
(
∆k,`(k), ‖xk − P (xk)‖∞

)
≥ ξε̂min

(
∆k,`(k), ε̄

)
.

Since Q(xk)−Q(xk+1)→ 0, we deduce that

lim
k→∞

∆k,`(k) = 0. (56)

By Lemma 3 and (55), we have

∆k,`(k) ≥ min(∆lo, ε̄/4) > 0, k = 0, 1, 2, . . . ,

which contradicts (56). We conclude that the second possibility (an infinite se-
quence {xk} not converging to S) cannot occur either, so the proof is complete.

Finally, we show that the algorithm terminates when εtol > 0.

Theorem 3. When εtol > 0, Algorithm TR terminates finitely.
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Proof. We show first that the algorithm cannot “get stuck” at a particular xk,
generating an infinite sequence of minor iterations at xk without eventually
satisfying either (31) or the acceptance test (23). We see from the reasoning in
the proof of Theorem 1 together with the monotonicity property of Lemma 1
that an infinite sequence of minor iterations must satisfy that

Q(xk)−mk,`(xk,`) ↓ 0. (57)

Since the right-hand side of (31) is bounded below by εtol, the test (31) must be
satisfied for some `. Therefore, the minor iteration sequence cannot be infinite.

Now consider the other possibility of an infinite sequence of major iterations
{xk}k=1,2,.... Since we have

Q(xk)−mk,`(xk,`) > εtol

for all k and `, and since the acceptance test (23) is satisfied at all k, we have

Q(xk)−Q(xk+1) ≥ ξεtol > 0, for all k = 0, 1, 2 . . ..

But this relation is inconsistent with the fact that {Q(xk)} is bounded below
(by Q∗), so this possibility can also be ruled out, and the proof is complete.

3.3. Discussion

The algorithm can be modified in various ways without changing its properties
greatly. For instance, we could replace the step norm bound in (20) by a scaled
bound of the form

‖S(x− xk)‖∞ ≤ ∆k,

where S is a diagonal positive definite matrix. After this modification, (21) re-
mains a linear program. We could also use a 1-norm trust region, at the cost of
introducing an additional variable vector s of the same dimension as x. Specifi-
cally, we enforce the constraint ‖x−xk‖1 ≤ ∆k by enforcing the following linear
constraints:

x− xk ≤ s, xk − x ≤ s, eT s ≤ ∆k.

Once again, we obtain a linear programming subproblem, albeit one that involves
more variables than (21)

If a 2-norm trust region is used, we can show by comparing the optimality
conditions for the respective problems that the solution of the subproblem

min
x

mk,`(x) subject to Ax = b, x ≥ 0, ‖x− xk‖2 ≤ ∆k

is identical to the solution of

min
x

mk,`(x) + λ‖x− xk‖2 subject to Ax = b, x ≥ 0, (58)

for some λ ≥ 0. We can transform (58) to a quadratic program in the same
fashion as the transformation of (20) to (21). The bundle-trust-region approaches
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described in Kiwiel [17], Hirart-Urruty and Lemaréchal [15, Chapter XV], and
Ruszczyński [22,23] also lead to problems of the form (58). These approaches
manipulate the parameter λ rather than adjusting the trust-region radius, more
in the spirit of the Levenberg-Marquardt method for least-squares problems than
of a true trust-region method. Hence, their analysis differs somewhat from that
of the preceding section. Moreover, although quadratic programming solvers that
exploit the special structure of the quadratic term in (58) have been designed and
implemented (see [22]), we believe that the linear programming subproblem (21)
is more appealing from a practical point of view. Improvements in the efficiency
and ease of use of linear programming software have continued to occur at a
rapid pace, and availability of high-quality software has made it much easier to
implement an efficient algorithm based on (21) than would have been the case
if the subproblems had the form (58).

4. An Asynchronous Bundle-Trust-Region Method

In this section we present an asynchronous, parallel version of the trust-region
algorithm of the preceding section and analyze its convergence properties.

4.1. Algorithm ATR

We now define a variant of the method of Section 3 that allows the partial sums
Q[j], j = 1, 2, . . . , T (11) and their associated cuts to be evaluated simultaneously
for different values of x. We generate candidate iterates by solving trust-region
subproblems centered on an “incumbent” iterate, which (after a startup phase)
is the point xI that, roughly speaking, is the best among those visited by the
algorithm whose function value Q(x) is fully known.

By performing evaluations of Q at different points concurrently, we relax the
strict synchronicity requirements of Algorithm TR, which requires Q(xk) to be
evaluated fully before the next candidate xk+1 is generated. The resulting ap-
proach, which we call Algorithm ATR (for “asynchronous TR”), is more suitable
for implementation on computational grids of the type we consider here. Besides
the obvious increase in parallelism that goes with evaluating several points at
once, there is no longer a risk of the entire computation being help up by the slow
evaluation of one of the partial sums Q[j] on a recalcitrant worker. Algorithm
ATR has similar theoretical properties to Algorithm TR, since the mechanisms
for accepting a point as the new incumbent, adjusting the size of the trust region,
and adding and deleting cuts are all similar to the corresponding mechanisms in
Algorithm TR.

Algorithm ATR maintains a “basket” B of at most K points for which the
value of Q and associated subgradient information is partially known. When the
evaluation of Q(xq) is completed for a particular point xq in the basket, it is
installed as the new incumbent if (i) its objective value is smaller than that of
the current incumbent xI ; and (ii) it passes a trust-region acceptance test like
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(23), with the incumbent at the time xq was generated playing the role of the
previous major iteration in Algorithm TR. Whether xq becomes the incumbent
or not, it is removed from the basket.

When a vacancy arises in the basket, we may generate a new point by solv-
ing a trust-region subproblem similar to (20), centering the trust region at the
current incumbent xI . During the startup phase, while the basket is being popu-
lated, we wait until the evaluation of some other point in the basket has reached
a certain level of completion (that is, until a proportion σ ∈ (0, 1] of the par-
tial sums (11) and their subgradients have been evaluated) before generating a
new point. We use a logical variable specevalq to indicate when the evaluation
of xq passes the specified threshold and to ensure that xq does not trigger the
evaluation of more than one new iterate. (Both σ and specevalq play a similar
role in Algorithm ALS.) After the startup phase is complete (that is, after the
basket has been filled), vacancies arise only after evaluation of an iterate xq is
completed.

We use m(·) (without subscripts) to denote the model function for Q(·).
When generating a new iterate, we use whatever cuts are stored at the time to
define m. When solved around the incumbent xI with trust-region radius ∆, the
subproblem is as follows:

trsub(xI ,∆): min
x

m(x) subject to Ax = b, x ≥ 0, ‖x− xI‖∞ ≤ ∆. (59)

We refer to xI as the parent incumbent of the solution of (59).
In the following description, we use k to index the successive points xk that

are explored by the algorithm, I to denote the index of the incumbent, and B
to denote the basket. We use tk to count the number of partial sums Q[j](xk),
j = 1, 2, . . . , T that have been evaluated so far.

Given a starting guess x0, we initialize the algorithm by setting the dummy
point x−1 to x0, setting the incumbent index I to −1, and setting the initial
incumbent value QI = Q−1 to ∞. The iterate at which the first evaluation is
completed becomes the first “serious” incumbent.

We now outline some other notation used in specifying Algorithm ATR:

QI : The objective value of the incumbent xI , except in the case of I = −1, in
which case Q−1 =∞.

Iq: The index of the parent incumbent of xq, that is, the incumbent index I
at the time that xq was generated from (59). Hence, QIq = Q(xIq ) (except
when Iq = −1; see previous item).

∆q: The value of the trust-region radius ∆ used when solving for xq.
∆curr: Current value of the trust-region radius. When it comes time to solve (59)

to obtain a new iterate xq, we set ∆q ← ∆curr.
mq: The optimal value of the objective functionm in the subproblem trsub(xIq ,∆q)

(59).

Our strategy for maintaining the model closely follows that of Algorithm TR.
Whenever the incumbent changes, we have a fairly free hand in deleting the cuts
that define m, just as we do after accepting a new major iterate in Algorithm TR.
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If the incumbent does not change for a long sequence of iterations (corresponding
to a long sequence of minor iterations in Algorithm TR), we can still delete
“stale” cuts that represent information in m that has likely been superseded (as
quantified by a parameter η ∈ [0, 1)). The following version of Procedure Model-
Update, which applies to Algorithm ATR, takes as an argument the index k of
the latest iterate generated by the algorithm. It is called after the evaluation of
Q at an earlier iterate xq has just been completed, but xq does not meet the
conditions needed to become the new incumbent.

Procedure Model-Update (k)
for each optimality cut defining m

possible delete ← true;
if the cut was generated at the parent incumbent Ik of k

possible delete ← false;
else if the cut was active at the solution xk of trsub(xIk ,∆k)

possible delete ← false;
else if the cut was generated at an earlier iteration ¯̀

such that I¯̀ = Ik 6= −1 and

QIk −mk > η[QIk −m¯̀] (60)

possible delete ← false;
end (if)
if possible delete

possibly delete the cut;
end (for each)

Our strategy for adjusting the trust region ∆curr also follows that of Algo-
rithm TR. The differences arise from the fact that between the time an iterate
xq is generated and its function value Q(xq) becomes known, other adjustments
of ∆current may have occurred, as the evaluation of intervening iterates is com-
pleted. The version of Procedure Reduce-∆ for Algorithm ATR is as follows.

Procedure Reduce-∆(q)
if Iq = −1

return;
evaluate

ρ = min(1,∆q)
Q(xq)−QIq
QIq −mq

; (61)

if ρ > 0
counter ← counter+1;

if ρ > 3 or (counter ≥ 3 and ρ ∈ (1, 3])
set ∆+

q ← ∆q/min(ρ, 4);
set ∆curr ← min(∆curr,∆

+
q );

reset counter ← 0;
return.
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The protocol for increasing the trust region after a successful step is based
on (29), (30). If on completion of evaluation of Q(xq), the iterate xq becomes
the new incumbent, then we test the following condition:

Q(xq) ≤ QIq − 0.5(QIq −mq) and ‖xq − xIq‖∞ = ∆q. (62)

If this condition is satisfied, we set

∆curr ← max(∆curr,min(∆hi, 2∆q)). (63)

The convergence test is also similar to the test (31) used for Algorithm TR.
We terminate if, on generation of a new iterate xk, we find that

QI −mk ≤ εtol(1 + |QI |). (64)

We now specify the four key routines of the Algorithm ATR, which serve a
similar function to the four main routines of Algorithm ALS. As in the earlier
case, we assume for simplicity of description that each task consists of evaluation
of the function and a subgradient for a single cluster (although in practice we may
bundle more than one cluster into a single task). The routine partial evaluate
executes on worker processors, while the other three routines execute on the
master processor.

ATR: partial evaluate(xq, q, j,Q[j](xq), gj)
Given xq, index q, and partition number j, evaluate Q[j](xq) from (11)

together with a partial subgradient gj from (13);
Activate act on completed task(xq, q, j,Q[j](xq), gj) on the master processor.

ATR: evaluate(xq, q)
for j = 1, 2, . . . , T (possibly concurrently)

partial evaluate(xq, q, j,Q[j](xq), gj);
end (for)

ATR: initialization(x0)
choose ξ ∈ (0, 1/2), trust region upper bound ∆hi > 0;
choose synchronicity parameter σ ∈ (0, 1];
choose maximum basket size K > 0;
choose ∆curr ∈ (0,∆hi], counter ← 0; B ← ∅;
I ← −1; x−1 ← x0; Q−1 ←∞; I0 ← −1;
k ← 0; speceval0 ← false; t0 ← 0;
evaluate(x0, 0).
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ATR: act on completed task(xq, q, j,Q[j](xq), gj))
tq ← tq + 1;
add Q[j](xq) and cut gj to the model m;
basketFill ← false; basketUpdate ← false;
if tq = T (* evaluation of Q(xq) is complete *)

if Q(xq) < QI and (Iq = −1 or Q(xq) ≤ QIq − ξ(QIq −mq))
(* make xq the new incumbent *)
I ← q; QI ← Q(xI);
possibly increase ∆curr according to (62) and (63);
modify the model function by possibly deleting cuts not arising

from the evaluation of Q(xq);
else

call Model-Update(k);
call Reduce-∆(q) to update ∆curr;

end (if)
B ← B\{q};
basketUpdate ← true;

else if tq ≥ σT and |B| < K and not specevalq
(* basket-filling phase: enough partial sums have been evaluated at xq

to trigger calculation of a new candidate iterate *)
specevalq ←true; basketFill ← true;

end (if)
if basketFill or basketUpdate

k ← k + 1; set ∆k ← ∆curr; set Ik ← I;
solve trsub(xI ,∆k) to obtain xk;
mk ← m(xk);
if (64) holds

STOP;
B ← B ∪ {k};
specevalk ←false; tk ← 0;
evaluate(xk, k);

end (if)

It is not generally true that the first K iterates x0, x1, . . . , xK−1 generated by
the algorithm are all basket-filling iterates. Often, an evaluation of some iterate is
completed before the basket has filled completely, so a “basket-update” iterate is
used to generate a replacement for this point. Since each basket-update iterate
does not change the size of the basket, however, the number of basket-filling
iterates that are generated in the course of the algorithm is exactly K.

4.2. Analysis of Algorithm ATR

We now analyze Algorithm ATR, showing that its convergence properties are
similar to those of Algorithm TR. Throughout, we make the following assump-
tion:

Every task is completed after a finite time. (65)
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The analysis follows closely that of Algorithm TR presented in Section 3.2.
We state the analogues of all the lemmas and theorems from the earlier section,
incorporating the changes and redefinitions needed to handle Algorithm ATR.
Most of the details of the proofs are omitted, however, since they are similar to
those of the earlier results.

We start by defining the level set within which the points and incumbents
generated by ATR lie.

Lemma 5. All incumbents xI generated by ATR lie in L(Qmax), whereas all
points xk considered by the algorithm lie in L(Qmax;∆hi), where L(·) and L(·; ·)
are defined by (32) and (33), respectively, and Qmax is defined by

Qmax
def= sup{Q(x) | ‖x− x0‖ ≤ ∆hi}.

Proof. Consider first what happens in ATR before the first function evaluation
is complete. Up to this point, all the iterates xk in the basket are generated
in the basket-filling part and therefore satisfy ‖xk − x0‖ ≤ ∆k ≤ ∆hi, with
QIk = Q−1 =∞.

When the first evaluation is completed (by xk, say), it trivially passes the
test to be accepted as the new incumbent. Hence, the first noninfinite incumbent
value becomes QI = Q(xk), and by definition we have QI ≤ Qmax. Since all later
incumbents must have objective values smaller than this first QI , they all must
lie in the level set L(Qmax), proving our first statement.

All points xk generated within act on completed task lie within a distance
∆k ≤ ∆hi either of x0 or of one of the later incumbents xI . Since all the incum-
bents, including x0, lie in L(Qmax), we conclude that the second claim in the
theorem is also true.

Analogously with β (34), we define a bound on the subgradients over the set
L(Qmax;∆hi) as follows:

β̄ = sup{‖g‖1 | g ∈ ∂Q(x), for some x ∈ L(Qmax;∆hi)}. (66)

The next result is analogous to Lemma 1. It shows that for any sequence of
iterates xk for which the parent incumbent xIk is the same, the optimal objective
value in trsub(xIk ,∆k) is monotonically increasing.

Lemma 6. Consider any contiguous subsequence of iterates xk, k = k1, k1 +
1, . . . , k2 for which the parent incumbent is identical; that is, Ik1 = Ik1+1 =
· · · = Ik2 . Then we have

mk1 ≤ mk1+1 ≤ · · · ≤ mk2 .

Proof. We select any k = k1, k1 +1, . . . , k2−1 and prove that mk ≤ mk+1. Since
xk and xk+1 have the same parent incumbent (xI , say), no new incumbent has
been accepted between the generation of these two iterates, so the wholesale cut
deletion that may occur with the adoption of a new incumbent cannot have oc-
curred. There may, however, have been a call to Model-Update(k). The first “else
if” clause in Model-Update would have ensured that cuts active at the solution
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of trsub(xI ,∆k) were still present in the model when we solved trsub(xI ,∆k+1)
to obtain xk+1. Moreover, since no new incumbent was accepted, ∆curr cannot
have been increased, and we have ∆k+1 ≤ ∆k. We now use the same argument
as in the proof of Lemma 1 to deduce that mk ≤ mk+1.

The following result is analogous to Lemma 2. We omit the proof, which
modulo the change in notation is identical to the earlier result.

Lemma 7. For all k = 0, 1, 2, . . . such that Ik 6= −1, we have that

QIk −mk ≥ min
(
∆k, ‖xIk − P (xIk)‖∞

) QIk −Q∗

‖xIk − P (xIk)‖∞
(67a)

≥ ε̂min
(
∆k, ‖xIk − P (xIk)‖∞

)
, (67b)

where ε̂ > 0 is defined in (10).

The following analogue of Lemma 3 requires a slight redefinition of the quan-
tity Ek from (39). We now define it to be the closest approach by an incumbent
to the solution set, up to and including iteration k; that is,

Ek
def= min

k̄=0,1,...,k;Ik̄ 6=−1
‖xIk̄ − P (xIk̄)‖∞. (68)

We also omit the proof of the following result, which, allowing for the change of
notation, is almost identical to that of Lemma 3.

Lemma 8. There is a constant ∆lo > 0 such that for all trust regions ∆k used
in the course of Algorithm ATR, we have

∆k ≥ min(∆lo, Ek/4).

The value of ∆lo that works in this case is ∆lo = (1/4) min(1, ε̂/β̄,∆hi), where
β̄ comes from (66).

There is also an analogue of Lemma 4 that shows that if the incumbent re-
mains the same for a number of consecutive iterations, the gap between incum-
bent objective value and model function decreases significantly as the iterations
proceed.

Lemma 9. Let εtol = 0 in Algorithm ATR, and let η̄ be any constant satisfying
0 < η̄ < 1, η̄ > ξ, η̄ ≥ η. Choosing any index k1 with Ik1 6= −1, we have either
that the incumbent Ik1 = I is eventually replaced by a new incumbent or that
there is an iteration k2 > k1 such that

QI −mk2 ≤ η̄
[
QI −mk1

]
. (69)

The proof of this result follows closely that of its antecedent Lemma 4. The key
is in the construction of the Model-Update procedure. As long as

QI −mk > η[QI −mk1 ], for k ≥ k1, where I = Ik1 = Ik, (70)
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none of the cuts generated during the evaluation of Q(xq) for any q = k1, k1 +
1, . . . , k can be deleted. The proof technique of Lemma 4 can then be used to
show that the successive iterates xk1 , xk1+1, . . . cannot be too closely spaced if
the condition (70) is to hold and if all of them fail to satisfy the test to become
a new incumbent. Since they all belong to a box of finite size centered on xI ,
there can be only finitely many of these iterates. Hence, either a new incumbent
is adopted at some iteration k ≥ k1 or condition (69) is eventually satisfied.

We now show that the algorithm cannot “get stuck” at a nonoptimal incum-
bent. The following result is analogous to Theorem 1, and its proof relies on the
earlier results in exactly the same way.

Theorem 4. Suppose that εtol = 0.

(i) If xI /∈ S, then this incumbent is replaced by a new incumbent after a finite
time.

(ii) If xI ∈ S, then either Algorithm ATR terminates (and verifies that xI ∈ S),
or QI −mk ↓ 0 as k →∞.

We conclude with the result that shows convergence of the sequence of in-
cumbents to S. Once again, the logic of proof follows that of the synchronous
analogue Theorem 2.

Theorem 5. Suppose that εtol = 0. The sequence of incumbents {xIk}k=0,1,2,...

is either finite, terminating at some xI ∈ S or is infinite with the property that
‖xIk − P (xIk)‖∞ → 0.

5. Implementation on Computational Grids

We now describe some salient properties of the computational environment in
which we implemented the algorithms, namely, a computational grid running
the Condor system and the MW runtime support library.

5.1. Properties of Grids

The term “grid computing” (synonymously “metacomputing”) is generally used
to describe parallel computations on a geographically distributed, heterogeneous
computing platform. Within this framework there are several variants of the con-
cept. The one of interest here is a parallel platform made up of shared worksta-
tions, nodes of PC clusters, and supercomputers. Although such platforms are
potentially powerful and inexpensive, they are difficult to harness for productive
use, for the following reasons:

– Poor communications properties. Latencies between the processors may be
high, variable, and unpredictable.

– Unreliability. Resources may disappear without notice. A workstation per-
forming part of our computation may be reclaimed by its owner and our job
terminated.
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– Dynamic availability. The pool of available processors grows and shrinks
during the computation, according to the claims of other users and scheduling
considerations at some of the nodes.

– Heterogeneity. Resources may vary in their operational characteristics (mem-
ory, swap space, processor speed, operating system).

In all these respects, our target platform differs from conventional multiprocessor
platforms (such as IBM SP or SGI Origin machines) and from Linux clusters.

5.2. Condor

Our particular interest is in grid computing platforms based on the Condor sys-
tem [18], which manages distributively owned collections (“pools”) of processors
of different types, including workstations, nodes from PC clusters, and nodes
from conventional multiprocessor platforms. When a user submits a job, the
Condor system discovers a suitable processor for the job in the pool, transfers
the executable and starts the job on that processor. It traps system calls (such
as input/output operations), referring them back to the submitting workstation,
and checkpoints the state of the job periodically. It also migrates the job to a
different processor in the pool if the current host becomes unavailable for any
reason (for example, if the workstation is reclaimed by its owner). Condor man-
aged processes can communicate through a Condor-enabled version of PVM [11]
or by using Condor’s I/O trapping to write into and read from a series of shared
files.

5.3. Implementation in MW

MW (see Goux, Linderoth, and Yoder [14] and Goux et al. [13]) is a runtime
support library that facilitates implementation of parallel master-worker applica-
tions on computational grids. To implement MW on a particular computational
grid, a grid programmer must reimplement a small number of functions to per-
form basic operations for communications between processors and management
of computational resources. These functions are encapsulated in the MWRM-
Comm class. Of more relevance to the current paper is the other side of MW,
the application programming interface presented to the application programmer.
This interface takes the form of a set of three C++ abstract classes that must be
reimplemented in a way that describes the particular application. These classes,
named MWDriver, MWTask, and MWWorker, contain a total of ten methods
for which the user must supply implementations. We describe these methods
briefly, indicating how they are implemented for the particular case of the ATR
and ALS algorithms.

MWDriver. This class is made up of methods that execute on the submitting
workstation, which acts as the master processor. It contains the following four
C++ pure virtual functions. (Naturally, other methods can be defined as needed
to implement parts of the algorithm.)
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– get userinfo: Processes command-line arguments and does basic setup. In
our applications this function reads a command file to set various parame-
ters, including convergence tolerances, number of scenarios, number of partial
sums to be evaluated in each task, maximum number of worker processors to
be requested, initial trust region radius, and so on. It calls the routines that
read and store the problem data files, and it reads the initial point, if one
is supplied. It also performs the operations specified in the initialization
routine of Algorithms ALS and ATR, except for the final evaluate operation,
which is handled by the next function.

– setup initial tasks: Defines the initial pool of tasks. In the case of Al-
gorithms ALS and ATR, this function corresponds to a call to evaluate at
x0.

– pack worker init data: Packs the initial data to be sent to each worker
processor when it joins the pool. In our case, the information contained in
the input files for the stochastic programming problem is sent to each worker.
When the worker subsequently receives a task requiring it to solve a number
of second-stage scenarios, it can use the original input data to generate the
particular data for its assigned set of scenarios. By loading each new worker
with the problem data, we avoid having to subsequently pass a complete set
of data for every scenario in every task.

– act on completed task: Is called every time a task finishes, to process the
results of the task and to take any actions arising from these results. See
Algorithms ALS and ATR for our definition of this function in our applica-
tions.

The MWDriver base class performs many other operations associated with
handling worker processes that join and leave the computation, assigning tasks
to appropriate workers, rescheduling tasks when their host workers disappear
without warning, and keeping track of performance data for the run. All this
complexity is hidden from the application programmer.

MWTask. The MWTask is the abstraction of a single task. It holds both the
data describing that task and the results obtained by executing the task. The
user must implement four functions for packing and unpacking this data and
results between master and workers into simple data structures that can be
communicated between master and workers using the appropriate primitives
for the particular computational grid platform on which MW is implemented. In
most of the results reported in Section 6, the message-passing facilities of Condor-
PVM were used to perform the communication. By simply changing compiler
directives, the same algorithmic code can also be implemented on an alternative
communication protocol that uses shared files to pass messages between master
and workers. The large run reported in the next section used this version of the
code.

In our applications, each task evaluates the partial sum Q[j](x) and a subgra-
dient for a given number of clusters. The task is described by a range of scenario
indices for each cluster in the task and by a value of the first-stage variables x.
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The results consist of the function and subgradient for each of the clusters in
the task.

MWWorker. The MWWorker class is the core of the executable that runs on
each worker. The user must implement two pure virtual functions:

– unpack init data: Unpacks the initial information passed to the worker by
the MWDriver function pack worker init data() when the worker joins
the pool. (See the discussion of pack worker init data in the MWDriver
class.)

– execute task: Executes a single task.

After initializing itself, using the information passed to it by the master, the
worker process sits in a loop, waiting for tasks to be sent to it. When it detects
a new task, it calls execute task to compute the results. It passes the results
back to the worker by using the appropriate function from the MWTask class,
and then returns to its wait loop. The wait loop terminates when the master
sends a termination message. In our applications, the execute task() function
formulates the second-stage linear programs in its clusters by using the informa-
tion in the task definition and the data passed to the worker on initialization.
It then calls the linear programming solvers SOPLEX or CPLEX to solve these
linear programs, and uses the dual solutions to calculate the subgradient for each
cluster.

6. Computational Results

We now report on computational experiments obtained with implementations
of the ALS, TR, and ATR algorithms using MW on the Condor system. After
describing some further details of the implementations and the experiments, we
discuss our choices for the various algorithmic parameters and how these were
varied between runs. We then tabulate and discuss the results.

6.1. Implementations and Experiments

As noted earlier, we used the Condor-PVM implementation of MW for most
of the the runs reported here. Most of the computational time is taken up
with solving linear programming problems, both by the master process (in
the act on completed task function) and in the tasks, which solve clusters of
second-stage linear programs. We used the CPLEX simplex solver on the master
processor and the SOPLEX public-domain simplex code (see Wunderling [27])
on the workers. SOPLEX is somewhat slower in general, but since most of the
machines in the Condor pool do not have CPLEX licenses, there was little al-
ternative but to use a public-domain code.

We ran most of our experiments on the Condor pool at the University of
Wisconsin, sometimes using Condor’s flocking mechanism to augment this pool
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with processors from other sites. The other sites included the University of New
Mexico, Columbia University, and the Linux cluster Chiba City at Argonne Na-
tional Laboratory. The architectures included PCs running Linux, and PCs and
Sun workstations running different versions of Solaris. The number of workers
available for our use varied dramatically between and during each set of trials,
because of the differing priorities of the two accounts we used, the variation of
our priority during each run, the number and priorities of other users of the
Condor pool at the time, and the varying number of machines available to the
pool. The latter number tends to be larger during the night, when owners of the
individual workstations are less likely to be using them. The master process was
run on a Linux machine in some experiments and an Intel Solaris machine in
other cases.

The input files for the problems reported here were in SMPS format (see Birge
et al. [3] and Gassmann and Schweitzer [10]). We considered two-stage stochastic
linear programs in which the number of scenarios is finite but extremely large.
We used Monte Carlo sampling to obtain approximate problems with a specified
number N of second-stage scenarios. Brief descriptions of the test problems can
be found at [16]. In each experiment, we supplied a starting point to the code,
obtained from the solution of a different sampled instance of the same problem.
The function value of the starting point was therefore quite close to the optimal
objective value.

6.2. Critical Parameters

As part of the initialization procedure (implemented by the get userinfo func-
tion in the MWDriver class), the code reads an input file in which various param-
eters are specified. Several parameters, such as those associated with modifying
the size of the trust region, have fixed values that we have discussed already in
the text. Others are assigned the same values for all algorithms and all experi-
ments, namely,

εtol = 10−5, ∆hi = 103, ∆0,0 = ∆0 = 1, ξ = 10−4.

We also set η = 0 in the Model-Update functions in both TR and ATR. In TR,
this choice has the effect of not allowing deletion of cuts generated during any
major iterations, until a new major iterate is accepted. In ATR, the effect is to
not allow deletion of cuts that are generated at points whose parent incumbent
is still the incumbent. Even among cuts for which possible delete is still true
at the final conditional statement of the Model-Update procedures, we do not
actually delete the cuts until they have been inactive at the solution of the
trust-region subproblem for a specified number of consecutive iterations. For TR,
we delete the cut if it has been inactive for more than 100 consecutive minor
iterations, while in ATR we delete the cut if it was last active at subproblem `,
where ` < k−100 and k is the current iteration index. Our cut deletion strategy
is therefore not at all parsimonious; it tends to lead to subproblems (20) and (59)
with fairly large numbers of cuts. In most cases, however, the storage required
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for these cuts and the time required to solve the subproblems remain reasonable.
We discuss the exceptions below.

The synchronicity parameter σ, which arises in Algorithms ALS and ATR
and which specifies the proportion of clusters from a particular point that must
be evaluated in order to trigger evaluation of a new candidate solution, is varied
between .5 and 1.0 in our experiments. The size K of the basket B is varied
between 1 and 14. For each problem, the number T of clusters is also varied in a
manner described in the tables, as is the number of tasks into which the second-
stage calculations are divided, which we denote by C. Note that the number of
second-stage LPs per chunk is therefore N/C while the number per cluster is
N/T .

The MW library allows us to specify an upper bound on the number of
workers we request from the Condor pool, so that we can avoid claiming more
workers than we can utilize effectively. We calculate a rough estimate of this
number based on the number of tasks C per evaluation of Q(x) and the basket
size K. For instance, the synchronous TR and LS algorithms can never use more
than C worker processors, since they evaluate Q at just one x at a time. In the
case of TR and ATR, we request mid(25, 200, b(K + 1)C/2c) workers. For ALS,
we request mid(25, 200, 2C) workers.

We have a single code that implements all four algorithms LS, ALS, TR, and
ATR, using logical branches within the code to distinguish between the L-shaped
and trust-region variants. There is no distinction in the code between the two
synchronous variants and their asynchronous counterparts. Instead, by setting
σ = 1.0, we force synchronicity by ensuring that the algorithm considers only
one value of x at a time.

Whenever a worker processor joins the computation, MW sends it a bench-
mark task that typifies the type of task it will receive during the run. In our
case, we define the benchmark task to be the solution of N/C second-stage LPs.
The time required for the processor to solve this task is logged, and we set the
ordering policy so as to ensure that when more than one worker is available to
process a particular task, the task is sent to the worker that logged the fastest
time on the benchmark task.

6.3. Results: Varying Parameter Choices

In this section we describe a series of experiments on the same problem, using
different parameter settings, and run under different conditions on the Condor
pool. For these trials, we use the problem SSN, which arises from a network
design application described by Sen, Doverspike, and Cosares [24]. This problem
is based on a graph with 89 arcs, each representing a telecommunications link
between two cities. The first-stage variables represent the (nonnegative) extra
capacity to be added to each of these 89 arcs to meet an uncertain demand
pattern. There is a constraint on the total added capacity. The demands consist
of requests for service between pairs of nodes in the graph. For each set of
requests, a route through the network of sufficient capacity to meet the requests
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must be found, otherwise a penalty term for each request that cannot be satisfied
is added to the objective. The second-stage problems are network flow problems
for calculating the routing for a given set of demand flows. Each such problem
is nontrivial: 706 variables, 175 constraints, and 2284 nonzeros in the constraint
matrix. The uncertainty lies in the fact that the demand for service on each
of the 86 pairs is not known exactly. Rather, there are three to seven possible
scenarios for these demands, all independent of each other, giving a total of
about 1070 possible scenarios. We use Monte Carlo sampling to obtain a sampled
approximation with N = 10, 000 scenarios. The deterministic equivalent for this
sampled approximation has approximately 1.75× 106 constraints and 7.06× 106

variables. In all the runs, we used as starting point the computed solution for
a different sampled approximation—one with 20, 000 scenarios and a different
random seed. The starting point had a function value of approximately 9.868860,
whereas the optimal objective was approximately 9.832544.

In the tables below we list the following information.

– points evaluated. The number of distinct values of the first-stage variables
x generated by solving the master subproblem—the problem (18) for Algo-
rithm ALS, (20) for Algorithm TR, and (59) for Algorithm ATR.

– |B|. Maximum size of the basket, also denoted above by K.
– number of tasks (chunks). Denoted above by C.
– number of clusters. Denoted above by T , the number of partial sums (11)

into which the second-stage problems are divided.
– max processors. The number of workers requested.
– average processors. The average of the number of active (nonsuspended)

worker processors available for use by our problem during the run. Because
of the dynamic nature of the Condor system, the actual number of available
processors fluctuates continually during the run.

– parallel efficiency. The proportion of time for which worker processors were
kept busy solving second-stage problems while they were owned by this run.

– maximum number of cuts in the model. The maximum number of
(partial) subgradients that are used to define the model function during the
course of the algorithm.

– masterproblem solve time. The total time spent solving the master sub-
problem to generate new candidate iterates during the course of the algo-
rithm.

– wall clock. The total time (in minutes) between submission of the job and
termination.

Table 1 shows the results of a series of trials of Algorithm ALS with three
different values of σ (.5, .7, and .85) and three different choices for the number
of chunks C into which the second-stage solutions were divided (10, 25, and 50).
The number of clusters T was fixed at 50, so that up to 50 cuts were generated
at each iteration. For σ = .5, the number of values of x for which second-stage
evaluations are occurring at any point in time ranged from 2 to 4 during the
runs, while for σ = .85, there were never more than 2 points being evaluated
simultaneously.
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ALS 269 .5 10 50 20 15 .74 5491 26 368
ALS 275 .5 25 50 50 21 .90 5536 25 270
ALS 293 .5 50 50 100 20 .83 5639 27 329
ALS 270 .7 10 50 20 12 .79 5522 27 509
ALS 274 .7 25 50 50 25 .73 5550 25 281
ALS 282 .7 50 50 100 26 .81 5562 24 254
ALS 254 .85 10 50 20 12 .58 5496 22 575
ALS 276 .85 25 50 50 19 .57 5575 23 516
ALS 278 .85 50 50 100 35 .49 5498 25 260

Table 1. SSN, with N = 10, 000 scenarios, Algorithm ALS.

When these runs were performed, we were not able to obtain anything ap-
proaching the requested number 2C of workers from the Condor pool. As general
trends, we see that the less synchronous variants (with σ = .5 and σ = .7) tend
to be faster than the more synchronous variant (with σ = .85), except for the
final run, during which more processors were available. Moreover, larger values
of C also tend to produce faster runs. We also note that the number of iter-
ations does not depend strongly on σ. We would not, of course, expect C to
affect strongly the number of iterations, but since it affects the manner in which
the second-stage evaluation work is distributed, we would expect it to affect the
run time. Since the number of workers available to us during this run was lim-
ited, however, we did not see the full benefit of a finer-grained work distribution
(C = 50), though the relatively low parallel efficiency of the final run (σ = .85,
C = 50) indicates that the benefits of more processors may not have been great
in any case.

A note on typical task sizes: For C = 10, a typical task required about 50-280
seconds on a typical worker machine available to us, while for C = 50, about 9-60
seconds were required. The large variation reflects the wide range in processing
ability of the machines available in a pool during a typical run. These numbers
also generally hold for the results in Tables 2 and 3.

By comparing the results from Table 1 with those reported in Tables 2 and 3,
we verified that Algorithm ALS was not as efficient on this problem as Algorithm
TR and certain variants of Algorithm ATR. One advantage, however, was that
the asymptotic convergence of ALS was quite fast. Having taken many iterations
to build up a model and return to a neighborhood of the solution after having
strayed far from it in early iterations, the last three to four iterations home in
rapidly from a relatively crude approximate solution (a relative accuracy (Qmin−
m(xk+1))/(1+|Qmin|) of between .0006 and .0026) to a solution of high accuracy.

We now turn to Tables 2 and 3, which report on two sets of trials on the
same problem as in Table 1. In these trials we varied the following parameters:



36 Jeff Linderoth, Stephen Wright

run
points

evaluated

|B| (K
)

#
tasks

(C
)

#
clusters

(T
)

m
ax. processors

allow
ed

av. processors

parallel effi
ciency

m
ax. #

cuts
in

m
odel

m
asterproblem

solve
tim

e
(m

in)

w
all clock

tim
e
(m

in)

TR 48 - 10 100 20 19 .21 4284 3 131
TR 72 - 10 50 20 19 .26 3520 3 150
TR 39 - 25 100 25 22 .49 3126 2 59
TR 75 - 25 50 25 23 .48 3519 3 114
TR 43 - 50 100 50 42 .52 3860 3 35
TR 61 - 50 50 50 44 .53 3011 3 40

ATR 109 3 10 100 20 18 .74 7680 9 107
ATR 121 3 10 50 20 19 .66 4825 6 111
ATR 105 3 25 100 50 37 .73 7367 8 49
ATR 113 3 25 50 50 41 .60 4997 6 48
ATR 103 3 50 100 100 66 .55 7032 9 29
ATR 129 3 50 50 100 66 .59 5183 7 32
ATR 167 6 10 100 35 24 .93 7848 13 99
ATR 209 6 10 50 35 22 .89 5730 15 92
ATR 186 6 25 100 87 49 .77 8220 14 53
ATR 172 6 25 50 87 49 .80 5945 7 49
ATR 159 6 50 100 175 31 .89 7092 11 65
ATR 213 6 50 50 175 40 .88 6299 12 70
ATR 260 9 10 100 50 12 .95 14431 35 267
ATR 286 9 10 50 50 23 .90 6528 19 160
ATR 293 9 25 100 125 17 .93 9911 30 232
ATR 377 9 25 50 125 15 .96 7080 24 321
ATR 218 9 50 100 200 28 .82 10075 25 101
ATR 356 9 50 50 200 23 .93 6132 23 194
ATR 378 14 10 100 75 18 .88 15213 77 302
ATR 683 14 10 50 75 14 .98 8850 48 648
ATR 441 14 25 100 187 22 .89 14597 61 312
ATR 480 14 25 50 187 20 .94 8379 36 347
ATR 446 14 50 100 200 20 .83 13956 64 331
ATR 498 14 50 50 200 22 .94 7892 35 329

Table 2. SSN, with N = 10, 000 scenarios, first trial, Algorithms TR and ATR.

– basket size: K = 1 (synchronous TR) as well as K = 3, 6, 9, 14;
– number of tasks: C = 10, 25, 50, as in Table 1;
– number of clusters: T = 50, 100.

The parameter σ was fixed at .7 in all these runs.
The results in Table 2 were obtained with the master processor running on

an Intel Solaris machine, while Table 3 was obtained with a Linux master. In
both cases, the Condor pool that we tapped for worker processors was identical.
Therefore, it is possible to do a meaningful comparison between each line of
Table 3 and its counterpart in Table 2. Conditions on the Condor pool varied
between and during each trial. This fact, combined with the properties of the
algorithm, resulted in large variability of runtime from one trial to the next, as
we discuss below.
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TR 47 - 10 100 20 17 .24 3849 4 192
TR 67 - 10 50 20 13 .34 3355 3 256
TR 47 - 25 100 25 18 .49 3876 4 97
TR 57 - 25 50 25 18 .40 2835 3 119
TR 42 - 50 100 50 30 .22 3732 3 122
TR 65 - 50 50 50 31 .25 3128 4 151

ATR 92 3 10 100 20 11 .89 7828 9 125
ATR 98 3 10 50 20 11 .84 4893 5 173
ATR 86 3 25 100 50 34 .38 6145 5 70
ATR 95 3 25 50 50 32 .41 4469 4 77
ATR 80 3 50 100 100 52 .23 5411 5 80
ATR 131 3 50 50 100 59 .47 4717 6 55
ATR 137 6 10 100 35 30 .57 8338 12 84
ATR 200 6 10 50 35 26 .60 5211 9 130
ATR 119 6 25 100 87 52 .55 7181 7 44
ATR 199 6 25 50 87 58 .48 5298 9 81
ATR 178 6 50 100 175 50 .47 9776 15 77
ATR 240 6 50 50 175 61 .64 5910 11 74
ATR 181 9 10 100 50 37 .56 8737 15 96
ATR 289 9 10 50 50 19 .93 7491 25 238
ATR 212 9 25 100 125 90 .66 11017 21 45
ATR 272 9 25 50 125 65 .45 6365 15 105
ATR 281 9 50 100 200 51 .72 11216 34 88
ATR 299 9 50 50 200 26 .83 7438 27 225
ATR 304 14 10 100 75 38 .89 13608 43 129
ATR 432 14 10 50 75 42 .95 7844 28 132
ATR 356 14 25 100 187 71 .78 13332 48 111
ATR 444 14 25 50 187 45 .89 7435 36 163
ATR 388 14 50 100 200 42 .79 12302 52 192
ATR 626 14 50 50 200 48 .81 7273 46 254

Table 3. SSN, with N = 10, 000 scenarios, second trial, Algorithms TR and ATR.

The nondeterministic nature of the algorithms is evident in doing a side-by-
side comparison of the two tables. Even for synchronous TR, the slightly different
numerical values for function and subgradient value returned by different workers
in different runs results in slight variations in the iteration sequence and therefore
slight differences in the number of iterations. For the asynchronous Algorithm
ATR, the nondeterminism is even more marked. During the basket-filling phase
of the algorithm, computation of a new x is triggered when a certain proportion
of tasks from a current value of x has been returned. On different runs, the tasks
will be returned in different orders, so the information used by the trust-region
subproblem (59) in generating the new point will vary from run to run, and the
resulting iteration sequences will generally show substantial differences.

The synchronous TR algorithm is clearly better than the ATR variants with
K > 1 in terms of total computation, which is roughly proportional to the
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number of iterations. In fact, the total amount of work increases steadily with
basket size. Because of the decreased synchronicity requirements and the greater
parallelism obtained for K > 1, the wall clock times (last columns) do not
follow quite the same trend. The wall clock times for basket sizes K = 3 and
K = 6 are at least competitive with the results obtained for the synchronous TR
algorithm. The choice K = 6 gave few of the fastest runs but did yield consistent
performance over all the different choices for the other parameters, and under
different Condor pool conditions.

The deleterious effects of synchronicity in Algorithm TR can be seen in its
poor performance on several instances, particularly during the second trial. Let
us compare, for instance, the entries in the two tables for the variant of TR with
C = 50 and T = 100. In the first trial, this run used 42 worker processors on
average and took 35 minutes, while in the second trial it used 30 workers on
average and required 122 minutes. The difference in runtime is too large to be
accounted for by the number of workers. Because this is a synchronous algorithm,
the time required for each iteration is determined by the time required for the
slowest worker to return the results of its task. In the first trial, almost all tasks
required between 6 and 35 seconds, except for a few iterations that contained
tasks that took up to 62 seconds. In the second trial, the slowest worker at each
iteration almost always required more than 60 seconds to complete its task. We
return to this point in discussing Table 4 below.

Other general observations we can make are that 100 clusters give almost
uniformly better results in terms of wall clock time than 50 clusters, although
the higher number results in a larger number of cuts in the trust-region sub-
problems and an increased amount of time on the master processor in solving
these problems. The latter factor is critical for K = 9 and K = 14, which do
not compare favorably with the smaller values of K on this problem, even if
many more worker processors are available. For the large basket sizes, the loss of
control induced by the increase in assynchronicity leads to a significantly larger
number of points that are evaluated.

In all cases, it takes some time for the model m to become a good enough ap-
proximation to Q that it generates a step that meets the trust-region acceptance
criteria. The six TR runs in Table 3, for instance, required 18, 27, 16, 22, 16, and
26 trust-region subproblems to be solved, respectively, before they stepped away
from the initial point. (Note that, as expected, the runs with T = 100 required
fewer such iterations than those with T = 50.) After the first step is taken, most
steps are successful; that is, the first minor iterate usually is accepted as the next
major iterate. Occasionally, two to four minor iterations are required before the
next major iteration is identified. Similar behavior is observed for the runs of
ATR, except that successful iterations are more widely spaced. For the first run
with K = 6 in Table 3, for instance, the 37th solution of (59) yields the first
successful step; then 36 of the following 99 solutions of the subproblem yield
successful steps.

In Table 4, we took the most promising parameter combinations from Ta-
bles 3 and 2 and ran three trials with each combination. The Condor pool condi-
tions varied widely during this trial, as can be seen by the way that the average
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TR 47 - 25 100 25 23 .49 4040 3 58
TR 44 - 25 100 25 21 .31 3220 3 97
TR 45 - 25 100 25 20 .23 3966 4 158
TR 51 - 50 100 50 37 .33 4428 3 48
TR 51 - 50 100 50 45 .14 4806 3 135
TR 46 - 50 100 50 41 .15 3847 4 135

ATR 81 3 25 100 50 43 .38 7451 6 64
ATR 81 3 25 100 50 39 .41 6461 5 64
ATR 87 3 25 100 50 36 .44 6055 8 66
ATR 106 3 50 100 100 84 .28 8222 9 53
ATR 95 3 50 100 100 65 .26 6786 7 64
ATR 94 3 50 100 100 23 .44 6593 8 105
ATR 171 6 25 100 87 70 .45 9173 19 61
ATR 135 6 25 100 87 61 .39 7354 12 75
ATR 145 6 25 100 87 38 .35 8919 16 146
ATR 177 6 50 100 175 87 .41 9263 22 54
ATR 162 6 50 100 175 93 .34 7832 18 66
ATR 159 6 50 100 175 39 .27 8215 22 199

Table 4. SSN final trial with best parameter combinations, N = 10, 000 scenarios, Algorithms
TR and ATR.

number of workers varies within each group of three runs. For the asynchronous
ATR runs, the differences in wall clock times within each set of three runs usually
can be explained in terms of the varying number of workers available. (A possible
exception is the last line of the table, the third run of ATR with K = 6, C = 50
and T = 100, which took almost four times as long as the first run while having
only slightly fewer than half as many processors. While the speed of machines
available was roughly similar between these runs, the third run was plagued with
numerous suspensions as the workers were reclaimed by their owners. Total time
that workers were suspended was over 23,000 seconds on the third run and less
than 2,800 seconds during the first run.) On the other hand, the variability in
wall clock time between the six runs of the synchronous TR algorithm was due
not to the number of available workers but rather to the synchronicity effect
described above. In the run reported in the first line of the table, for instance,
the slowest worker on any iteration typically took less than 65 seconds. In the
run reported on the third line, the time required by the slowest worker varied
significantly but was typically much longer, 150 seconds and more.

6.4. Larger Instances

We also performed runs on several larger instances of SSN (with N = 100, 000
scenarios) and on some very large instances of the stormG2 problem, a cargo
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ATR 177 3 100 100 200 38 .52 10558 47 1357

Table 5. SSN, with N = 100, 000 scenarios.
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TR 17 - 125 125 250 106 .55 2310 0.5 146
ATR 25 3 125 125 250 106 .90 3292 0.5 116

Table 6. stormG2, with N = 250000 scenarios.

flight scheduling application described by Mulvey and Ruszczyński [20]. Our
interest in this section is more in the sheer size of the problems that can be
solved using the algorithms developed for the computational grid than with the
relative performance of the algorithms with different parameter settings.

Table 5 shows results for a sampled instance of SSN with N = 100, 000
scenarios, which is a linear program with approximately 1.75 × 107 constraints
and 7.06 × 107 variables. This run was performed at a time when not many
machines were available, and many suspensions occurred during the run. We
chose T = 100 chunks per evaluation and found that most tasks required between
41 and 300 seconds on the workers, with a few task times of more than 500
seconds. (The benchmarks indicated that the worker speed varied over a factor
of 7.) A total of 77 different workers were used during the run, though the average
number of nonsuspended workers available at any time was only 39. In fact, at
any given point in the computation there were an average of 7 workers assigned
to this task that were suspended. Still, a result was obtained in about 22 hours.

In the stormG2 problem of Mulvey and Ruszczyński [20], the first-stage prob-
lem contained 121 variables, while each second-stage problem contained 1259
variables. We considered first a sampled approximation of this problem with
250000 scenarios, which resulted in a linear program with 1.32× 108 constraints
and 315 × 108 unknowns. Results are shown in Table 6. The algorithm was
started at a solution of a sampled instance with fewer scenarios and was quite
close to optimal. The objective function at the initial point was approximately
15499595.1, compared with an optimal value of 15499591.9 achieved by Algo-
rithm TR. In fact, the TR algorithm takes only one major iteration—it accepts
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ATR 38 4 1024 1024 800 433 .668 39647 1.9 31.9

Table 7. stormG2, with N = 107 scenarios.

Fig. 1. Number of workers used for stormG2, with N = 107 scenarios.

the 16th minor iteration as the first major iterate x1. The ATR variant does
not take even one step—it terminates after determining that the initial point
x0 is optimal to within the given convergence tolerance. Although we requested
250 processors, an average of only 106 were available during the time that we
performed these two test runs. The second run is able to utilize these to high
efficiency, as the second-stage workload can be divided into a large number of
chunks and very little time is spent in solving the trust-region subproblem.

Finally, we report on a very large sampled instance of stormG2 with N = 107

scenarios, an instance whose deterministic equivalent is a linear program with
9.85×108 constraints and 1.26×1010 variables. Performance is profiled in Table 7.

We used the tighter convergence tolerance εtol = 10−6 for this run. The algo-
rithm took successful steps at iterations 28, 34, 37, and 38, the last of these being
the final iteration. The first evaluated point had a function value of 15526740,
compared with a value of 15498842 at the final iteration.

For this run, we augmented the Wisconsin Computer Science Condor pool
with machines from Georgia Tech, the University of New Mexico, the Italian
National Institute of Physics (INFN), the NCSA at the University of Illinois, and
the IEOR Department at Columbia, the Albu, and the Wisconsin engineering
Department. Table 8 shows the number and type of processors available at each
of these locations. In contrast to the other runs reported here, we used the
“MW-files” implementation of MW, the variant that uses shared files to perform
communication between master and workers rather than Condor-PVM.

The job ran for a total of almost 32 hours. The number of workers being used
during the course of the run is shown in Figure 1. The job was stopped after
approximately 8 hours and was restarted manually from a checkpoint about 2
hours later. It then ran for approximately 24 hours to completion. The number
of workers dopped off significantly on two occasions. The drops were due to the
master processor “blocking” to solve a difficult master problem and to checkpoint
the state of the computation. During this time the worker processors were idle,
and MW decided to release a number of the processors rather than have them
sit idle.
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Number Type Location
184 Intel/Linux Argonne
254 Intel/Linux New Mexico
36 Intel/Linux NCSA
265 Intel/Linux Wisconsin
88 Intel/Solaris Wisconsin
239 Sun/Solaris Wisconsin
124 Intel/Linux Georgia Tech
90 Intel/Solaris Georgia Tech
13 Sun/Solaris Georgia Tech
9 Intel/Linux Columbia U.
10 Sun/Solaris Columbia U.
33 Intel/Linux Italy (INFN)

1345

Table 8. Machines available for stormG2, with N = 107 scenarios.

As noted in Table 7, an average of 433 workers were present at any given point
in the run. The computation used a maximum of 556 workers, and there was a
ratio of 12 in the speed of the slowest and fastest machines, as determined by the
benchmarks. A total of 40837 tasks were generated during the run, representing
3.99×108 second-stage linear programs. (At this rate, an average of 3472 second-
stage linear programs were being solved per second during the run.) The average
time to solve a task was 774 seconds. The total cumulative CPU time spent by
the worker pool was 9014 hours, or just over one year of computation.

7. Conclusions

We have described L-shaped and trust-region algorithms for solving the two-
stage stochastic linear programming problem with recourse, and derived asyn-
chronous variants suitable for parallel implementation on distributed heteroge-
neous computational grids. We prove convergence results for the trust-region
algorithms. Implementations based on the MW library and the Condor system
are described, and we report on computational studies using different algorith-
mic parameters under different pool conditions. Becasue of the dynamic nature
of the computational pool, it is impossible to arrive at a “best” configuration
or set of algorithmic parameters for all instances. Instead, it may be important
to adjust the algorithm parameters dynamically; we suggest this as a line of fu-
ture research. Finally, we report on the solution of some large sampled instances
of problems from the literature, including an instance of the stormG2 problem
whose deterministic equivalent has more than 1010 unknowns. Since the use of
the computational grid has the greatest benefit on problems that require large
amounts of computation, the algorithms developed here are best suited to larger
(multistage) problems or incorporated into a sample average approximation ap-
proach (see Shapiro and Homem-de-Mello [25].
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